Simulation Optimization : New Approaches and an Application
نویسندگان
چکیده
Title of dissertation: SIMULATION OPTIMIZATION: NEW APPROACHES AND AN APPLICATION Huashuai Qu, Doctor of Philosophy, 2014 Dissertation directed by: Professor Michael C. Fu Department of Decision, Operations, and Information Technologies Simulation models are commonly used to provide analysis and prediction of the behavior of complex stochastic systems. Simulation optimization integrates optimization techniques into simulation analysis to capture response surface, to choose optimal decision variables and to perform sensitivity analysis. Objective functions usually cannot be computed in closed form and are computationally expensive to evaluate. Many methods are proposed by researchers for problems with continuous and discrete variables, respectively. The dissertation is comprised of both optimization methods and a real-world application. In particular, our goal is to develop new methods based on direct gradient estimates and variational Bayesian techniques. The first part of the thesis considers the setting where additional direct gradient information is available and introduces different approaches for enhancing regression models and stochastic kriging with this additional gradient information, respectively. For regression models, we propose Direct Gradient Augmented Regression (DiGAR) models to incorporate direct gradient estimators. We characterize the variance of the estimated parameters in DiGAR and compare them analytically with the standard regression model for some special settings. For stochastic kriging, we propose Gradient Extrapolated Stochastic Kriging (GESK) to incorporate direct gradient estimates by extrapolating additional responses. We show that GESK reduces mean squared error (MSE) compared to stochastic kriging under certain conditions on step sizes. We also propose maximizing penalized likelihood and minimizing integrated mean squared error to determine the step sizes. The second part of the thesis focuses on the problem of learning unknown correlation structures in ranking and selection (R&S) problems. We proposes a computationally tractable Bayesian statistical model for learning unknown correlation structures in fully sequential simulation selection. We derive a Bayesian procedure that allocates simulations based on the value of information, thus anticipating future changes to our beliefs about the correlations. The proposed approach is able to simultaneously learn unknown mean performance values and unknown correlations, whereas existing approaches in the literature assume independence or known correlations to learn unknown mean performance values only. Finally we consider an application in business-to-business (B2B) pricing. We propose an approximate Bayesian statistical model for predicting the win/loss probability for a given price and an approach for recommending target prices based on the approximate Bayesian model. SIMULATION OPTIMIZATION: NEW METHODS AND AN APPLICATION
منابع مشابه
EFFICIENT SIMULATION FOR OPTIMIZATION OF TOPOLOGY, SHAPE AND SIZE OF MODULAR TRUSS STRUCTURES
The prevalent strategy in the topology optimization phase is to select a subset of members existing in an excessively connected truss, called Ground Structure, such that the overall weight or cost is minimized. Although finding a good topology significantly reduces the overall cost, excessive growth of the size of topology space combined with existence of varied types of design variables challe...
متن کاملA New Multi-Objective Optimization Method Based on Genetic- Fuzzy Algorithm and its Application in Induction Motor Speed Control
In this paper, a new method based on genetic-fuzzy algorithm for multi-objective optimization is proposed. This method is successfully applied to several multi-objective optimization problems. Two examples are presented: the first example is the optimization of two nonlinear mathematical functions and the second one is the design of PI controller for control of an induction motor drive supplie...
متن کاملA New Multi-Objective Optimization Method Based on Genetic- Fuzzy Algorithm and its Application in Induction Motor Speed Control
In this paper, a new method based on genetic-fuzzy algorithm for multi-objective optimization is proposed. This method is successfully applied to several multi-objective optimization problems. Two examples are presented: the first example is the optimization of two nonlinear mathematical functions and the second one is the design of PI controller for control of an induction motor drive supplie...
متن کاملIntegrated Well Placement and Completion Optimization using Heuristic Algorithms: A Case Study of an Iranian Carbonate Formation
Determination of optimum location for drilling a new well not only requires engineering judgments but also consumes excessive computational time. Additionally, availability of many physical constraints such as the well length, trajectory, and completion type and the numerous affecting parameters including, well type, well numbers, well-control variables prompt that the optimization approaches b...
متن کاملSIMULATION OF ENDURANCE TIME EXCITATIONS USING INCREASING SINE FUNCTIONS
Endurance Time method is a time history dynamic analysis in which structures are subjected to increasing excitations. These excitations are known as endurance time excitation functions (ETEF). This study proposes a new method for generating ETEFs. In the proposed method, a new basis function for representing ETEFs is introduced. This type of ETEFs representation creates an intelligent space for...
متن کاملCombination of Approximation and Simulation Approaches for Distribution Functions in Stochastic Networks
This paper deals with the fundamental problem of estimating the distribution function (df) of the duration of the longest path in the stochastic activity network such as PERT network. First a technique is introduced to reduce variance in Conditional Monte Carlo Sampling (CMCS). Second, based on this technique a new procedure is developed for CMCS. Third, a combined approach of simulation and ap...
متن کامل